
Integrating Theory and Practice: Applying the Quality Improvement

Paradigm to Product Line Engineering

Michael Stark

Goddard Space Flight Center

Introduction

My assertion is that not only are product lines a
relevant research topic, but that the tools used by

empirical software engineering researchers can

address observed practical problems. Our experience
at NASA has been there are often externally

proposed solutions available, but that we have had

difficulties applying them in our particular context.
We have also focused on return on investment issues

when evaluating product lines, and while these are
important, one can not attain objective data on

success or failure until several applications from a
product family have been deployed.

The use of the Quality Improvement Paradigm (QIP)

[1] can address these issues by

1. Planning an adoption path from an organization's
current state to a product line approach.

2. Constructing a development process to fit the

organization's adoption path

3. Evaluation of product line development
processes as the project is being developed.

The QIP consists of the following 6 steps:

1. Characterize the project and its environment

2. Set quantifiable goals for successful project

performance

3. Choose the appropriate process models,
supporting methods, and tools for the project

4. Execute the process, analyze interim results, and

provide real-time feedback for corrective action

5. Analyze the results of completed projects and

recommend improvements

6. Package the lessons learned as updated and

refined process models.

Figure 1 shows the QIP in detail. The iterative nature

of the QIP supports an incremental development
approach to product lines, and the project learning

and feedback provide the necessary early evaluations.

sto Package & "-i_haracterize _

/ / 0 XX Set _i

Analyze / IL_UfpUI-;41LI¢ \ goa!s

A ,/ ...,.--'-'-_,""_:oo / Choose
• ! /' ,___ . . % _ / processes,

I' ! [t'roject _ _ / methods,

I I ! learnin2 I b -'T- / techniques,
Pr°'";pr°ces"° £ ,n,,oo,,

_l _ Analyze
results

Figure 1. The Quality Improvement Paradigm

My current research is into tailoring the QIP to fit the

needs of product line development. It carries out the
same steps as are defined for the QIP, but each of
these steps is specialized to address product line

issues. My tailoring of the QIP, Model-based

Analysis for Product Line Engineering (MAPLE),
proposes four stages:

* Adoption requirements, which encompasses the
first two steps of the QIP,

• Process development, which corresponds to the

third step,

e Process evaluation, which corresponds to the
next two steps, and

, Process deployment, which encompasses the
packaging step of the QIP.

The original intent of this research is to address how
to construct or tailor a product line development

approach to fit a particular organization's needs.
However, the first two steps of the QIP can be

adapted to the larger issue of organizational change.

Anyplannedchangeshouldstartwitha
characterizationofthecurrentorganizationandofthe
goalstobeattainedbythechange,asaprecondition
forplanninganadoptionpath.Inprinciple,thesame
characterizationthatdrivesproductscopingshould
beabletosetrequirementsontheprocessesthatare
usedtodevelopandexploitaproductline.

Thettltirnategoalofmyresearchistoprovidean
approachtodevelopingandrefiningprocessesthat
operatesconcurrentlywithproductdevelopment,as
shownbelowinTablel. Thishasalreadybeen
proposedfordevelopingapplicationengineering
processes[2],I amproposingthatthisbedoneforall
aspectsofproductlineengineering.

Process Engineering Product development

Adoption Planning

Process development Product Scoping

Process Evaluation Product Development

* Project learning

* Post-analysis

Process Deployment

• As core assets

• Domain engineering

• Architecture

• Implementation

• Test

Product deliveries

• Core assets

• Applications

Table 1. Concurrent Product Line Engineering

I will focus the rest of this position paper on how to
characterize an organization' current state and its
goals. These characterizations will drive the

development of adoption strategies, the requirements
for and constraints on development processes, and
the determination of which features will be included

in the product line.

Characterizing the organization

The MAPLE approach to characterizing the

organization's current and goal states is to define a
hierarchical classification scheme that incorporates
key issues. The same scheme is used for both the

current and goal states. The top level components of
the hierarchy are the organization's assets, its

stakeholders, its business model, and its processes.

Each of these top level areas can be decomposed in

turn, and assigned characterization functions that are
similar in concept to those found in PuLSE-Eco. [3].

Assets

The assets discussed here are candidate work

products that can either be incorporated into a new

product line, or may inform the development of a
product line. These can be decomposed into domain

assets such as requirements and algorithm
documents, architecture assets such as existing

system designs and available COTS products,

implementation assets such as source code and make
files, and verification assets such as test plans,

procedures and results.

Each of these types of assets may be characterized on
an ordinal scale that measures a level of trust in its

reusability:

0 - asset would need to be replaced

1 - asset may be salvageable

2 - asset is part of a tested reuse library

3 - asset is part of an already existing product line.

As a product line evolves, the core assets developed

in previous cycles can be factored into the decisions

for what to do next - hence the inclusion of product
line assets in this scale.

A second characteristic that one can start to assess is

the extent of modification or tailoring needed to reuse

an asset. However, enough details to complete this
characterization may not be available until the

scoping is done, or even until commonality analysis

is done during product development.

Stakeholders

Characterizing the stakeholders may be the most
difficult of the 4 areas, as the focus is on people,

rather than products or documented processes.
However, this is a critical area to the success or

failure of a product line. For example, the
Generalized Support Software (GSS) project at

GSFC met all its stated goals, yet has fallen into

disuse. One of the key reasons for this is that one set
of stakeholders, the flight dynamics analysts who

would develop mission requirements using core
assets, were not sufficiently considered by the GSS

development team and their management [4].

The first issue to be addressed is to identify all the
stakeholders. In the case of GSS, the analysts were

known to be important, but in principle it is possible
to omit a stakeholder.

There are ways to directly characterize stakeholders

that are currently used in empirical software
engineering. One common characterization is a set of

ordinal scales measuring experience: total software

developmentexperience,experienceinarole,or
experiencewithaparticularorganization.

However,therearesomemorecomplexquestionsto
answer.Oneishowdoesonecharacterizethe
interactionsbetweenstakeholderroles?Doesthe
current organizational structure support the

interactions that are needed to build and exploit a
product line?

Another issue is to assess the gap between current

stakeholder roles and what would be necessary to
succeed in a product line environment. To do this

would require substantial understanding of how

stakeholders carry out their work product
development.

All of these questions are areas where empirical
research may provide very practical answers.

Business Model

The business model can be split into two main

components: product metrics such as size,
complexity, cost, and cycle time that quantify the

development process; and market drivers such as

cost, time-to-market, or quality that indicate priorities
perceived by the organization.

The product metrics can be used to estimate retum on

investment. Ideally, an organization already has a
metrics baseline that can be used. If not, data may be

scavenged from sources such as project status
reports, or estimated through interviews with

managers and other key personnel. In any case, the
product metrics associated with the goal states will be
estimates that must be validated as a product line

project is being developed.

In the area of market drivers, quality can in turn be

decomposed into factors such as reliability,

maintainability, safety or portability. Each of these
quality factors, along with cost and cycle time, can be

characterized and aggregated into a benefit function,
as in [3], to provide relative weights to market
drivers.

Process

There are two aspects of process that should be
measured. The first is process maturity in general,

the second is the degree of product line technology

usage.

Software process maturity is often measured using

the SEI's CMM or CMMI model. If an organization
has already done this, the results can be used in this
context.

If an organization has not performed a full process
assessment using one of these models, one can still

construct a model that is similar but not nearly as

exhaustive. For example, the CMMI continuous
model [5] defines the broad categories of

engineering, project management, process
management, and support (configuration

management, quality assurance). One can also
define an ordinal scale similar to CMMI maturity
levels as follows:

1. reliance on the abilities of individuals

2. reliance on project based processes

3. reliance on organizationally defined processes

4. quantifiably predictable processes

5. continuously improving processes

Each of the 4 broad categories can be characterized

on this scale through informal interviews. The results
will not be as accurate as a full CMM or CMMI

assessment, but the goal here is to gain enough

information to plan a product line adoption strategy.
A full assessment would be appropriate if overall

process improvement is considered as part of the
strategy, but this may not always be the case,

A measure of the degree of product line technology
use can be built from the following three product line
characteristics:

• The product line represents an investment to be

amortized across multiple products

• There is an asset development process that is

separate and distinct from the product
development process

• There is a well-defined procedure for assembling
products from core assets.

An ordinal scale for reuse technology level can be
constructed as follows:

I. no significant reuse approach

2. scavenging from previous projects

3. First of above characteristics is satisfied: there is

multiple project investment.

4. First two characteristics are satisfied

5. All three characteristics are satisfied.

The Software Engineering Institute defines a product
line as a "A group of products sharing a common,

managed set of features that satisfy specific needs of
a selected market or mission area." [6] Using this

definition, level 3 and above would represent the use
of a product line approach. There may be

organizationswherealevel3approachmightbe
moreappropriatethanalevel5one;inotherwords
thisscalemeasuresthesatisfactionofasetof
propertieswithoutanassumptionthatsatisfyingmore
ofthemisbetter.

Using the classification hierarchy

Figure 2 below shows a partial decomposition of the
classification hierarchy. The above discussion has

discussed some of the theoretical modeling
considerations for constructing the hierarchy, this

section discusses some of the practical reasons for

such a hierarchy.

Characterization

Process

Stakeholders Business

/\
Market

Product
Metrics Drivers

Figure 2. Classification Hierarchy

First, the hierarchy can be decomposed to whatever

level is needed. A small organization might write an
informal description of both its current state and its

goal state, allocating a page to each of the four top
level areas. A larger organization in a safety critical

area might use the full hierarchy, and add more
detailed information on safety issues to the market

drivers, the process and the stakeholders.

Second, a tree hierarchy is easy to understand and to

edit. This is useful when applying an iterative
learning approach such as the QIP. As more is
learned during product line development, the key
issues can be elaborated in more detail and the less

relevant parts of the model can be either removed or
represented in less detail. The trees representing an

organization's current and desired state may also help
visualize the areas that need to be addressed in an

adoption plan.

A practical approach to using such hierarchies would

be to provide an example hierarchy for organizations
to use as a starting point for their planning, and allow
the organization to tailor the example to fit its needs.

Future Research

There are two areas of research that follow from this

work, both of which have extremely practical
application. The first is the application of a

classification hierarchy to adoption planning. Some
of the issues to be addressed here are:

• How do the current and desired organizational
characteristics map into an adoption strategy?

• Which of the characteristics have the greatest

impact on process and product development?

The second research area is the development of

MAPLE as an approach to concurrent engineering of
processes within a product line approach. My

approach here is to develop each MAPLE step in
turn, analyze the plausibility of the approach through

a retrospective analysis applying it to GSS, then
validating it through use on a product line project.

,

,

.

References

I. Basili, V. and S. Green, "Software Process

Evolution at the SEL", IEEE Software, pp. 58-
66, July 1994.

2. Weiss, David M. and Chi Tau Robert Lai

Software Product-Line Engineering: A Family

Based Software Development Approach,
Addison-Wesley, 1999.

3. DeBaud, J-M. and K. Schmid, "A Systematic
Approach to Derive the Scope of Software

Product Lines," pp. 34-43. Proceedings of the

21st 1CSE. Los Angeles, CA, May 1999.

Condon, S., et al., "Evolving the Reuse Process

at the Flight Dynamics Division (FDD) Goddard
Space Flight Center", Proceedings of the 21 St

Annual Software Engineering Workshop,
Greenbelt, MD, December 1996.

CMMlSM for Systems Engineering, Software

Engineering, Integrated Product and Process

Development, and Supplier Sourcing (CMMI-
SE/SW/IPPD/SS, V1.1) Continuous

Representation CMU/SEI-2002-TR-011, March
2002

Software Engineering Institute: "Glossary, A
Framework for Software Product Line Practice -

Version 3.0",

http://www, seLcmu.edu/plp/frame report/glossar

y.htm.

